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Abstract
Phase transitions of a generalized Dicke model in the Coulomb gauge—
including A2 terms in the matter–radiation coupling, as well as direct dipole–
dipole interaction terms—are studied. After a brief review of previous work
on the ‘no-go theorem’ for phase transitions in the Dicke model, it is shown
that a consistent truncation of the radiation modes and of the direct interactions
leads to a model that does have a phase transition. When transformed to the
electric dipole gauge, such a system takes exactly the form of the original Dicke
Hamiltonian, which displays the expected phase transition.

1. Introduction

The Dicke model [1] has been long studied as a model of collective behaviour of radiation
coupled to matter. In its original form, it describes a set of two-level systems with constant
energy, coupled to a single photon mode, i.e. a bosonic field. At low temperatures, the Dicke
model has a phase transition, below which the two-level systems become polarized, and there
is an expectation for the bosonic field [2–4]. This transition occurs even in the canonical
ensemble, and so would describe the instability of the vacuum of the interacting light–matter
system to spontaneous generation of a photon field. However, if the Dicke model is understood
as an approximation of the interaction of light and matter in the Coulomb (A · p) gauge, then
the Dicke model neglects terms like A2. As shown by Rza̧żewski et al [5, 6], including such
terms prevents the phase transition occurring.

Generalizations of the Dicke model have been studied in many contexts, including
polariton condensation [7–9], quantum computing [10–12], and the dynamics of strongly
interacting fermionic atomic gases near a Feshbach resonance [13, 14]. In several of these
examples, phase transitions are studied, but in the grand canonical ensemble, i.e. with
constrained density, in which case the A2 terms do not destroy the phase transition [8]. One
reason for its wide use is that, in the rotating wave approximation, the generalization of the
Dicke model with varying two-level system energies, but constant couplings to the photon field,
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corresponds to an integrable classical system [14]. This is because the Dicke Hamiltonian, like
the closely related BCS Hamiltonian is in the class of Gaudin–Richardson models [15].

Since the two-level systems in the original Dicke model couple to the radiation field,
they are electric dipoles, and as such one should also consider direct electrostatic interactions
between them. The phase transition of an ensemble of two-level systems—describing dipoles
with direct electrostatic interactions—to a state with macroscopic polarization has been
considered by Emeljanov and Klimontovich [16]. The transition due to such direct interactions
has also been considered in the presence of an interaction via coupling to a common bosonic
mode [17]. However, the Coulomb interaction between dipoles, and the coupling of dipoles to
the quantized electromagnetic field are not independent, both describe the coupling of matter
to the electromagnetic field, and the atomic matrix elements for both interactions are related.
Further, in the Coulomb gauge, the inclusion of both direct and photon mediated interactions
is necessary to find an overall retarded interaction [18, 19]; and the division of the interaction
between direct and photon mediated terms is gauge dependent. The importance of how the sum
over photon modes is to be truncated in deriving the Dicke model was also discussed in part
in [20].

In this paper, we discuss how the Dicke model can be realized as a consistent (as defined
below) truncation of the full Hamiltonian of dipoles interacting with the electromagnetic field,
if described in the electric dipole gauge. Since the presence or absence of a phase transition is
of course gauge independent, the same transition must be present in the Coulomb gauge. In that
case, the same truncation describes a generalized Dicke model, including both A2 terms and
a direct Coulomb interaction. This model shows a phase transition under identical conditions
to those in the electric dipole gauge. The bosonic field that appears in the two gauges has a
different meaning, and so whether it acquires a macroscopic expectation below the transition
does depend on the gauge. However, the transverse electric field is a gauge independent
quantity, and does not acquire a macroscopic value in either gauge, so the results here are
not in contradiction with other more general no-go theorems [21, 22].

It is worth highlighting here certain differences between the Dicke model discussed in this
paper (and studied by Hepp and Lieb [2, 4] and Wang and Hioe [3]), and the related models
applied to microcavity polaritons [7–9]. The model studied in this paper can be seen as a
truncation of the microscopic model of dipoles interacting with radiation; the Dicke models
studied in microcavities are more phenomenological, for example including effects of disorder
by the choice of energies and coupling strengths of the two-level systems [9]. The most
important difference is that in microcavities, light is confined by the dielectric mirrors, and
so the relevant photon modes start at a non-zero energy, however the Coulomb interactions
between different two-level systems are not significantly affected by the mirrors. Thus, in the
microcavity system, the spatial modes relevant to the photon mediated and direct interactions
are quite different; in the microscopic model discussed here, the spatial modes relevant to
both interactions are the same. Secondly, in microcavities, significant Coulomb interaction due
to exchange terms may exist [23], which lead to a repulsive interaction; the treatment here
assumes isolated dipoles, interacting via dipole–dipole coupling. Finally, as mentioned above,
phase transitions in microcavities are normally discussed in the Grand Canonical ensemble,
with a certain density of particles; the discussion here is for the instability of the vacuum,
calculated in the canonical ensemble.

The remainder of this paper is organized as follows. In section 2 the full Hamiltonian in
the Coulomb gauge is considered, and the considerations important in truncating the sum are
discussed. A truncated version of this Coulomb gauge Hamiltonian, that gives a generalized
Dicke model, is then given in section 3, and is shown to support a phase transition. These
calculations are then repeated in the electric dipole gauge in section 4. Finally, section 5
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contains conclusions, and some general comments about the importance of including direct
Coulomb interactions when discussing choice of gauge for matter–radiation interactions.

2. The full Hamiltonian, truncation of sums

To begin, consider a system of atoms, interacting via the electromagnetic field, described in
the Coulomb gauge. This interaction includes both a direct Coulomb term, and interaction
via quantized radiation modes, which are described by operators ψ†

j that create photons
of wavevector k j , and polarization ê j . Writing di = re,i − rh,i for the relative electron
displacement, and Ri for the centre of mass of atom i , the full Hamiltonian may be written
as:

H =
∑

i

H0(i)+
∑

j

h̄ωk jψ
†
jψ j +

∑

i, j

{
−i

e

h̄
[H0(i),di ] ·

√
h̄

2ωk j ε0V
ê j (ψ j e

ik j ·Ri + h.c.)

}

+ e2h̄

4mrε0V

∑

i

[
∑

j

(
ψ j eik j ·Ri + ψ

†
j e−ik j ·Ri

√
ωk j

)]2

− e2

2ε0

∑

i �= j

(di)αδ
‖
αβ(Ri − R j )(dj)β . (1)

Here, H0 is the bare Hamiltonian for a single atom, V the quantization volume, mr the reduced
mass, and (di )α is the α component of the displacement di of atom i . In this expression, both
the coupling to transverse radiation, and the direct Coulomb term (the last term) have been
written in the dipole approximation (i.e. assuming di � |Ri − R j |). The coupling to transverse
radiation, A · p has been rewritten using pi = mṙi = m×i [H0, ri ]/h̄. The direct dipole–dipole
interaction can be written in terms of the longitudinal delta function, which is given explicitly
by:

δ
‖
αβ(r) = 1

4πr 3

(
3rαrβ

r 2
− δαβ

)
= ∂2

∂rα∂rβ

∫
d3k

(2π)3
eik·r

k2
. (2)

Let us now consider how to truncate this Hamiltonian in order to provide a simpler model.
As discussed in section II.C.5 of [18], in the Coulomb gauge there is a non-retarded Coulomb
potential between different dipoles. This is not physical; when combined with the photon
mediated interaction only retarded interactions survive. In order for such a cancellation between
instantaneous terms to hold in a truncated Hamiltonian, one must truncate both the sum over
radiation modes, and the spatial harmonics involved in the direct Coulomb interaction. It is
therefore helpful to write the Coulomb interaction as a sum over the same set of modes as the
radiation term, thus:

δ
‖
αβ(r) = 1

V

∑

k

[(
δαβ − kαkβ

k2

)
− δαβ

]
eik·r (3)

=
[

1

V

∑

j

(ê j )α(ê j)βeik j ·r
]

− δαβδ(r), (4)

where equation (4), makes use of the set of polarization vectors ê j which are perpendicular
to k j . This description leaves a purely local term, δ(r) which should not contribute when
considering the interaction between different dipoles.

Performing a truncation to include only the lowest radiation mode, and projecting the
matter part into a two-level basis leads to a variant of the Dicke model:
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H = ε
∑

i

Sz
i + h̄ω0ψ

†ψ + g√
V

∑

i

i(S+
i − S−

i )(ψ + ψ†)

+ κ(ψ + ψ†)2 − η
∑

i �= j

(S+
i + S−

i )(S
+
j + S−

j ), (5)

where Si is a spin 1/2 operator representing the two-level system (TLS) for atom i , and the
interaction strengths are given by the parameters:

g = 2εedab√
2h̄ω0ε0

, κ = N

V

e2h̄

4mrε0ω0
, η = e2d2

ab

2ε0V
. (6)

Note in equation (5) that the coupling of the TLS to radiation depends on the component
Sy

j , while the dipole–dipole interaction depends on the component Sx
j . This difference can

be understood by recalling that pi = m × i [H0, ri ]/h̄, and since H0 = εSz
i , the p and r

matrix elements of a TLS must correspond to spin components rotated by π/2 about the z axis.
Note also that although the dipole interaction including all k j modes as given in equation (2)
averages to zero after angular integration, the truncation to the lowest k mode gave a non-zero
value, which favours dipole alignment. This is in part a result of truncation to the two-level
basis. That this interaction is correct is confirmed by the discussion in section 4, where it is
seen that this form is required so that Coulomb terms are cancelled in the electric dipole gauge,
as should be the case [18].

3. Generalized Dicke model in the Coulomb gauge

Having derived the generalized Dicke model of equation (5), one may next consider phase
transitions of this model. It is convenient to consider the partition function, written as a trace
over coherent states. Introducing a real scalar field φ to decouple the dipole interactions, and
writing ψ = ψ ′ + iψ ′′, the partition function is:

Z =
∫

dψ ′
∫

dψ ′′
∫

dφ exp

[
−β

(
h̄ω0|ψ|2 + 4κψ ′2 + φ2

4η

)]

×
N∏

i=1

(
∑

Si

exp

[
−β

(
φSx

i + 2
g√
V
ψ ′Sy

i + εSz
i

)])
. (7)

Then, integrating over the TLS gives an effective action for the fields ψ and φ:

Seff = h̄ω0|ψ|2 + 4κψ ′2 + φ2

4η
− N

β
ln[cosh (βE)], E2 = ε2 + 4g2ψ ′2

V
+ φ2. (8)

Since the model considered does not include spatial variation, one only need study mean-field
properties, so a phase transition is signalled when a non-zero value of φ or ψ minimizes Seff.
It can immediately be seen that minimizing with respect to ψ ′′ yields the condition ψ ′′ = 0.
Considering next ψ ′:

1

2

∂Seff

∂ψ ′

∣∣∣∣
ψ ′′=0

= h̄ω0ψ
′ + 4κψ ′ − N

V

4g2ψ ′

2E
tanh(βE), (9)

then since tanh(βE) � 1, a solution with ψ ′ �= 0 is possible only if:

ε
(h̄ω0 + 4κ)

2g2 N/V
< 1. (10)

However the Thomas–Reiche–Kuhn (TRK) sum rule (see e.g. [24]) implies 2κε � g2 N/V .
Since both terms in the numerator are positive, the TRK inequality prevents equation (10)
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Figure 1. Critical conditions for a polarized phase, as given by equation (11); written in terms
of density scale ρ0 = ε/(2Vη) = εε0/(e2d2

ab), and temperature scale T0 = ε. It is clear that a
transition can occur at low enough temperature as long as N/V � ρ0.

from ever being satisfied. This is the result of Rza̧żewski et al [5, 6]. Considering now φ,
minimization of Seff yields:

1

2

∂Seff

∂φ

∣∣∣∣
ψ=0

= φ

4η
− N

φ

2E
tanh(βE), (11)

i.e. the critical temperature (at which a solution with φ �= 0 first exists) is controlled by the
equation N tanh(βε) = ε/2η; this is shown in figure 1. There exists a temperature at which a
solution exists as long as:

ε < 2ηN = e2d2
ab

ε0

N

V
. (12)

This requirement does not violate the TRK sum rule, and so at large enough densities of
TLS, their mean-field Coulomb interaction causes a spontaneous polarization; i.e. the model
is ferroelectric.

4. The electric dipole gauge

The previous analysis can be repeated in the electric dipole gauge, in which the truncated
Hamiltonian will be shown to have a simpler (i.e. Dicke) form. To change gauge, one may
introduce the unitary transformation:

U = exp

(
∑

j

λ∗
jψ j − λ jψ

†
j

)
, λ j = ie√

2ε0h̄ωk j V

∑

i

ê j · di e
ik j ·Ri . (13)

This is a transformation of the full Hamiltonian, equation (1), not the Hamiltonian in the TLS
representation. This is important, since the bare TLS Hamiltonian, H0(i), differs between
gauges, so the operations of gauge transformation and projecting onto a two-level basis do
not commute. As shown in [18] (complements AIV and CIV), such a unitary transformation
modifies two terms in equation (1). Firstly, the minimal coupling interaction disappears,

5



J. Phys.: Condens. Matter 19 (2007) 295213 J Keeling

(p − eA)2 → p2, if one makes the dipole approximation, as discussed earlier. Secondly,
the transformation modifies the radiation Hamiltonian:

∑

j

h̄ωk jψ
†
jψ j →

∑

j

h̄ωk j

(
ψ

†
j + λ∗

j

) (
ψ j + λ j

)
. (14)

The cross terms, λ jψ
†+h.c. describe a new matter–radiation interaction, which is in effect D·r,

where D is electric displacement. From the form of δ‖
αβ(r) in equation (4), it is apparent that

the term h̄ωk j |λ j |2 (arising from equation (14)) cancels the direct dipole–dipole interaction
in equation (1). This cancellation requires that any truncation matches for the sums over
the radiation modes in equation (1), the delta function (4), and in the transformation (13).
Applying such a transformation, the full Hamiltonian of equation (1) in the electric dipole
gauge becomes:

H =
∑

i

H ′
0(i)+

∑

j

h̄ωk jψ
†
jψ j +

∑

i

edi · Di , (15)

Di =
∑

j

i

√
h̄ωk j

2ε0V
ê j

(
ψ j e

ik j ·Ri − ψ
†
j e−ik j ·Ri

)
. (16)

Note that if, in the Coulomb gauge, dipole interactions had been ignored, there would now be
a non-physical interaction in the electric dipole gauge. This non-physical interaction would
have the opposite sign to the physical interaction that should exist in the Coulomb gauge.
Therefore, such a non-physical interaction can prevent the transition. This latter point was
noted by Bialynicki-Birula and Rza̧żewski [25]. Such a non-physical interaction in the dipole
gauge is a result of neglecting the physical interaction in the Coulomb gauge, and describes a
model with instantaneous interactions.

Projected onto TLS, this yields the Dicke model:

H = ε
∑

i

Sz
i + h̄ω0ψ

†ψ + g′
√

V

∑

i

i(S+
i + S−

i )(ψ − ψ†) (17)

where the new coupling strength can be related to that in equation (6) by g′ = (h̄ω0/2ε)g.
Integrating over the TLS in the same way as before gives an effective action:

Seff = h̄ω0|ψ|2 − N

β
ln [cosh (βE)] , E2 = ε2 + 4g2ψ ′2

V

(
h̄ω0

2ε

)2

. (18)

Repeating the previous analysis, minimization gives:

1

2

∂Seff

∂ψ ′

∣∣∣∣
ψ ′′=0

= h̄ω0ψ
′ − N

V

4g2ψ ′

2E

(
h̄ω0

2ε

)2

tanh(βE), (19)

and so a solution exists if:

ε
h̄ω0

2g2 N/V

(
2ε

h̄ω0

)2

= εε0

e2d2
ab

V

N
< 1. (20)

This is identical to the condition in equation (12), and describes the same transition. Therefore,
if the Dicke model is considered as light–matter interaction in the electric dipole gauge, the
Hepp and Lieb transition is not an artefact of neglecting terms. Note that, since the bosonic
modes in this gauge represent electric displacement (see equation (16)), then the transition to
a state ψ �= 0 just means spontaneous polarization, as ψ �= 0 did in the Coulomb gauge; the
transverse electric field is gauge invariant as expected.
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5. Conclusion

As well as atoms confined in a cavity, the model of two-level systems interacting with radiation
modes can also apply to localized electronic excitations, such as excitons, in a semiconductor.
In a semiconductor one must however consider how other electrical excitations modify the
electromagnetic field—i.e. screening of the Coulomb interaction, and of the photon field [19].
Such screening includes contributions due to optical phonons (in a dipolar material), free
electrons, plasmons etc [26]. In practice, this means replacing the bare dielectric constant ε0 by
ε0εk in both the Coulomb interaction term, and the coupling to radiation modes. (However, if
the dynamics of the system of interest are close to a resonance of some other excitation, it may
be necessary to include the dynamics of such a response, which in a Hamiltonian formalism
requires the explicit inclusion of those modes that lead to the resonance [19].) It is clear that
to avoid introducing instantaneous interactions, it is again important to match the wavevector
dependence of the screening of Coulomb interaction and the coupling of matter to radiation.

Such considerations are important, as it is common to write down models of such
excitations in semiconductors in which the matter–radiation interaction is written in the electric
dipole gauge, while a direct Coulomb term is also retained [26]. However, in the context
of microcavity polaritons, such an approach can be reasonable, since the important radiation
modes are those confined by the cavity, and thus having a large wavevector, while the important
Coulomb terms may be more slowly varying. It is thus possible to perform a partial gauge
transform, restricting the sum in equation (13) to radiation modes with large wavevector k
thus leaving the small k part of the interaction in the Coulomb gauge, but transforming the
high k part to the dipole gauge. This then allows the correct description of the light–matter
coupling, in contexts where experimentally measured eigenstates and dipole matrix elements
are used [27, 28].

In conclusion, including the effect of direct Coulomb interactions, a phase transition occurs
in a Dicke-like model, leading to a spontaneous polarization of the two-level systems. In the
electric dipole gauge, the system is described by the original Dicke Hamiltonian. The phase
transition does not however lead to a spontaneous transverse electric field. In the Coulomb
gauge, where the bosonic mode represents the transverse electric field there will therefore be
no macroscopic occupation of the bosonic mode. The boson field in the electric dipole gauge
represents electric displacement, and so the phase transition does lead to an expectation of
the bosonic field. Since the system is neutral, D‖ = 0 = ε0E‖ + P‖, and so a spontaneous
polarization leads to a longitudinal electric field. Note that although the total polarization of
a two-level system vanishes outside the system, the transverse and longitudinal parts of the
polarization need not vanish.
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